Differentiate

If y=e^x sinx

Find d10y/dx10.

11 Answers

1
harrys ·

is it 32excosx

1
sahil jain ·

ma ans. is negetive of harry's answer

1
nihal raj ·

- e^x cosx ..... hariya babu -ve sign kaha gaya.... :)

1
shubhi gupta ·

-32excosx

1708
man111 singh ·

as we know that e(ix) = cosx + i.sinx.
and e(-ix) = cosx - i.sinx.

so sinx = (eix + e-ix) / 2.

I think this may help you.....

1
nihal raj ·

i mistyped the ans ,ans is 32 ex cosx...

1
nihal raj ·

y=exsinx ( given )

dydx= exsinx + excosx

d2ydx2=exsinx + excosx + excosx - exsinx

d2ydx2=2(excosx)

d3ydx3=2(excosx - exsinx)

d4ydx4 =2(excosx - exsinx - exsinx - excosx)

d4y dx4= 2(-2exsinx)= -4exsinx

NOW TAKING -4 AS COMMON WE CAN SEE THAT WE HAVE TO DO AGAIN DERIVATIVE OF exsinx ,so AFTER FOURTH DERIVATIVE NEXT FOURTH DERIVATIVE WILL BE ,

d8y
dx8
=-4d4xdx4

d8y
dx8
=-4(-4exsinx)=16exsinx

d10ydx10=16(d2y/dx2)

d10ydx10=16(2excosx)

d10ydx10=32 excosx

is it correct now steps seems to be long but when u do roughly, trick works in seconds

11
Joydoot ghatak ·

@nihal... hey how come..

d8y/dx8 =(d4y/dx4)2...

then d2y/dx2 should be = (dy/dx)2..

is it so???

1
Euclid ·

hahaha..... no its not so...:P

y = exsinx

=> dydx = exsinx + excosx = ex(sinx + cosx) = √2exsin (x + Π4)

=> d2yd2x = (√2)2ex sin (x + 2.Π4)
.
.
...proceeding this way,

dnydxn = (√2)nexsin (x + nΠ4)

so now put n=10 and get the ans 32 excosx :)

11
Joydoot ghatak ·

thats a better method than the previous one...

6
AKHIL ·

yup
euclid explained it better...

Your Answer

Close [X]