y=√(cosx+y)
y2-y=cos x
2y-1=-sin xdx/dy
(2y-1)dy/dx+sinx=0
Q) If y=√cosx+√cosx+√cosx......
Prove that (2y-1)dy/dx+sinx=0.
-
UP 0 DOWN 0 0 13
13 Answers
i want to knw is there any other method than this method....
y√cosx+y
y2=cosx+y
Differentiating.........
2y.dy/x=-sinx+dy/dx
therefore.....
(2y-1)dy/dx+sinx=0.....
yes prajith
this can be done b ychain rule alone
think for a moment :)
bhayya actually i knw the method of y2=cosx+y.....i have typed it without seeing abhirups answer.........
y=\sqrt{cosx+\sqrt{cosx+\sqrt{cosx......}}} \Rightarrow \frac{dy}{dx} =\frac{1}{2 \sqrt{cosx+\sqrt{cosx+\sqrt{cosx......}}}}\times \frac{d}{dx}\left\{{cosx+\sqrt{cosx+\sqrt{cosx......}}} \right\} \Rightarrow \frac{dy}{dx} =\frac{1}{2 \sqrt{cosx+\sqrt{cosx+\sqrt{cosx......}}}}\times\left\{-sinx + \frac{dy}{dx} \right\}thus, \frac{dy}{dx}=\frac{1}{2y}\times\left\{-\sin x +\frac{dy}{dx} \right\}
mere ko kyun nahi dikh raha :(... pink wala nishant bhaiya ka... jiski sab wahwahi kar rahe hainn