If f(x+y)=f(x)f(y) for all x and y and f'(0) exists show that f'(x)=f'(x).f'(0) for all x
f'(x)=[f(x+h)-f(x+0)]/h=f(x)*[f(h)-f(0)]/h=f(x)*f'(0)
lim h->0
JPG, GIF or PNG only, Max size: 2MBTip: Resize your image before uploading
Sign up
Login