Domain DOubts Easy ones

Find domain of the following:
log\ [log_{|sin x|}(x^2-8x+23)-\frac{3}{log_{2}|sin x|}]

7 Answers

6
Kalyan IIT-K Beware I'm coming ·

cud nyone post there working.
m getting trouble with mod sinx part.....

49
Subhomoy Bakshi ·

log\,[log_{|sin\, x|}(\frac{x^2-8x+23}{8})]

|six x| ≠1

or |sin x|≠0

49
Subhomoy Bakshi ·

let the given thing be log{log|sin x|t}

now -1≤sin x≤1,

so 0≤|sin x|≤1

but as it is base of logarithm, |sin x|≠0 and ≠1

so 0<|sin x|<1

thus sin x = fraction less than 1

let |sin x|=1y where y is a positive real number greater than 1

so, the expression is

log{log(1y)t}

so , log(1y)t≥0

so, log t log 1y≥0

so, log t-log y≥0

so, - log tlog y≥0

so, log tlog y≤0

now, log y cannot be less than 0 since t>1

so, log t≤0

so, t ≤ a0 wer a is any arbitrary positive number not equal to 1

so, t≤1

also sin x≠0,1

x≠0,π,π/2,3π/2

49
Subhomoy Bakshi ·

x2-8x+238≤1

or, x2-8x+15≤0

or (x-3)(x-5)≤0

or x ε [3,5]

49
Subhomoy Bakshi ·

manmay's question.... divided by eight kaha se aaya..

answer:

log\,[log_{|sin\, x|}({x^2-8x+23})-3log_{|sin\,x|}2 ]=log\,[log_{|sin\, x|}({x^2-8x+23})-log_{|sin\,x|}8 ]=log\,[log_{|sin\, x|}(\frac{{x^2-8x+23}}{8})

1
" ____________ ·

log _{|sinx| }( x^2 - 8x + 23) - \frac{3}{log_{2}|sinx|}>0

log _{|sinx| }( x^2 - 8x + 23) - \3log_{|sinx|}2>0

log _{|sinx| }\left(\frac{x^2- 8x + 23}{2^3} \right)>0

from definition of logarithm funcn

we have

base ≠0 ,1

therefore

\left(\frac{x^2- 8x + 23}{2^3} \right)< |sinx |^0 \left( \texttt{bcoz |sinx| lies between 0 and 1})

hence inequality reverses

so we have

{x^2- 8x + 23} < 8

and

| sinx | ≠0,1

ie

{x^2- 8x + 15} < 0

( x- 5 ) ( x-3 ) < 0

usin no.line rule

x\varepsilon (3,5 )

since

|sinx | ≠0 ,1

sinx ≠0 and sinx ≠±1

ie

x ≠n\pi, \frac{(2n + 1 )\pi }{2}

now we want principal value hence put n= 1

x ≠π , 3π2

so we want domain we shud not include 3, 5 , pi, 3pi/2

DOMAIN IS

\left(3,\pi \right)U (\pi , \frac{3\pi }{2})U ( \frac{3\pi }{2}, 5 )

hope dis is ans !!!!!

6
Kalyan IIT-K Beware I'm coming ·

thnks subho nd omi...
a few more doubts may crop up......if they hope u'll help.......:)

Your Answer

Close [X]