\hspace{-16}\mathbf{(1)\;\;:: f(x)=\sqrt{x^{12}-x^9+x^4-x+1}}$\\\\ Now function $\mathbf{f(x)}$ is defined only when $\mathbf{x^{12}-x^9+x^4-x+1>0}$\\\\ Now Let $\mathbf{g(x)=x^{12}-x^9+x^4-x+1}$\\\\ \textbf{case{(a)::\;}}If $\mathbf{x\leq 0\;,}$ Then $\mathbf{g(x)>0}$\\\\ \textbf{case{(b)::\;}}If $\mathbf{0<x<1 \;,}$ Then $\mathbf{g(x)=x^{12}+x^4-x^9+1-x=x^{12}+x^4(1-x^5)+(1-x)>0}$\\\\ \textbf{case{(c)::\;}}If $\mathbf{x\geq 1 \;,}$ Then $\mathbf{g(x)=x^{12}-x^9+x^4-x+1=x^{9}(x^3-1)+x(x^3-1)+1>0}$\\\\ So $\mathbf{g(x)>0\forall x\in\mathbb{R}}$\\\\ So Domain is $\mathbf{x\in\mathbb{R}}$
Find the domain
Q:1 √x12-x9+x4-x+1
Q:2 √Cx2+4x2x2+3.Here n= x2+4x and r=2x2+3. C stands for combination
Q:3√x-1x-2{x}
{.} denotes fractional part function.
-
UP 0 DOWN 0 1 8
8 Answers
\hspace{-16}\mathbf{(2)::f(x)=\sqrt{\binom{x^2+4x}{2x^2+3}}}$\\\\ Here $\mathbf{f(x)}$ is defined only when $\mathbf{\binom{x^2+4x}{2x^2+3}>0}$\\\\ *Use the face that $\mathbf{\binom{n}{r}=\frac{n!}{r!.(n-r)!}}$\\\\ Which is defined when $\mathbf{n,r\geq 0}$ and $\mathbf{n\geq r}$ and $\mathbf{n,r\in\mathbb{Z^{+}}}$\\\\ So $\mathbf{x^2+4x\geq 0}$ and $\mathbf{2x^2+3\geq 0}$ and $\mathbf{x^2+4x\geq 2x^2+3}$\\\\ $\mathbf{x(x+4)\geq 0}$ and $\mathbf{2x^2+3>0\in\mathbb{R}}$ and $\mathbf{x^2-4x+3\leq 0}$\\\\ $\mathbf{x\geq 0}$ and $\mathbf{x\in \left[1\;,3\right]}$\\\\ $\mathbf{x\in\left[1\;,3\right]}$\\\\ But $\mathbf{x^2+4x\;, 2x^2+3\in \mathbb{Z^{+}}}$\\\\ So $\mathbf{x=\left\{1\;,2\;,3\right\}}$
Thanks MAN111. These solutions are good. Even my teacher could not provide me solution to these questions.
Yeah Vivek,these are absolutely from Arihant.
your most welcome Abhinav
$Abhinav (3)\; is $\mathbf{\sqrt{\frac{x-1}{x-2\left\{x\right\}}}}$
the only requirement is (x-1) and (x- 2{x}) must have the same sign , and x≠2{x} so x≠0
when x<0, of course 2{x}>0 so x-2{x}<0
we need x-1<0 i.e x<-1
- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -- - - - -
When x>0
x≠2{x} , when 0<x<1
when 1≤x<2, x= 1+ {x} = 2{x}, so not possible because {x}<1
when x≥2, then not possible becasue 2{x}<2
x-2{x}<0 when 0<x<1 also x-1<0
x-2{x}>0 when x≥1 also x-1≥0
so domain
x<-1,x>0
yeah, these sums are from arihant Differential calculus series by Amit M Agarwal.