Let \; f'(x)=k(x)f(x) \; then f"(x)=f(x)[k^{2}(x)+k'(x)]
k(x)=\frac{25}{(x-1)}+\frac{43}{(x-2)}+\frac{11}{(x-3)}
no. of distinct real roots of f"(x) if f(x)=(x-1)25(x-2)43(x-3)11
Let \; f'(x)=k(x)f(x) \; then f"(x)=f(x)[k^{2}(x)+k'(x)]
k(x)=\frac{25}{(x-1)}+\frac{43}{(x-2)}+\frac{11}{(x-3)}
That reasoning fails with repeated roots. x=1,2,3 are roots of f"(x) = 0 too