Find the limit.

Evaluate:
\lim_{n\to\infty}\dfrac{1}{n}\sum_{k=1}^n\left(\left[\dfrac{2n}{k}\right]-2\left[\dfrac{n}{k}\right]\right)
Here [x] represents the greatest integer less than or equal to .

39 Answers

1
Akshay Pamnani ·

Good to see u here sir!!
I am budku007

11
Subash ·

it simplifies to

0∫1([2/x]-2[1/x])dx

after that [7]

1
skygirl ·

yup me too got that....

but after that... sochte hai....

33
Abhishek Priyam ·

nice... maine ye dekha hi nahi.... [12]

11
Mani Pal Singh ·

ANSWER IS 0

1
skygirl ·

:O

kaise ?

66
kaymant ·

No Manipal, the answer is NOT zero.

11
Subash ·

any hint sir

have i proceeded in the right direction?

1
skygirl ·

I1 = \int_{0}^{1}{[\frac{2}{x}]dx}

=> I1 = \int_{2/3}^{1}{2.dx}+ \int_{1/2}^{2/3}{3.dx} +\int_{2/5}^{1/2}{4.dx}+ .....

=> I1 = 2(1- 2/3) + 3(2- 1/2) + 4(1/2 - 2/5) + .....

=> I1 = 2+ 2 + 2 +.... - (4/3 + 3/2 + 8/5 + 5/3 ....)

(cont.. in the nxt post..)

Your Answer

Close [X]