Rearranging...
x/y = ln(c) + ln(x)
Diff. wrt "x"-
\frac{1}{x} = \frac{y -\left(\frac{dy}{dx}\right)x}{y^2}
Which gives...
\frac{dy}{dx} = \frac{y}{x} - \frac{y^2}{x^2}
if y = xln|cx| where c is a arbitrary constant, is the general son. of differential equation
dydx = yx + \phi \left(\frac{x}{y} \right) , then the function \phi \left(\frac{x}{y} \right) is---
ans.----> - y2x2
fisrtly try the q urself and then post the q
its seems ur r posting Qs here jus for the sake of posting
yaar aisa nahin hai.
Govind ne post karne ko bola tha isliye for practise i posted.
Rearranging...
x/y = ln(c) + ln(x)
Diff. wrt "x"-
\frac{1}{x} = \frac{y -\left(\frac{dy}{dx}\right)x}{y^2}
Which gives...
\frac{dy}{dx} = \frac{y}{x} - \frac{y^2}{x^2}