freak integral

\int \frac{1}{(x+\sqrt{x^{2}-1)}^{2}}dx

far practize

3 Answers

106
Asish Mahapatra ·

manmay can u edit that?? woh sq. root ke andar bracket and the power 2 close hota hai kya?

1
Zuko Alone ·

I=\int {\frac{1}{({x+\sqrt{x^2-1}})^2}}dx \\=\int {({x-\sqrt{x^2-1}})^2}dx \\=\int {2x^2-1-2x\sqrt{x^2-1}}dx \\=\frac {2}{3}x^3-x-2\int {x\sqrt{x^2-1}}dx \\now, \\z^2=x^2-1 \\zdz=xdx \\I=\frac {2}{3}x^3-x-2\int z^2dz \\=\frac {2}{3}x^3-x-\frac{4}{3}z^3+C \\=\frac {2}{3}x^3-x-\frac{4}{3}{(\sqrt{x^2-1})}^3+C

1
Manmay kumar Mohanty ·

thnks sir but i had solved the question earlier.just posted for practice.
anyways thnks

Your Answer

Close [X]