sin (sin-1x ) will be x only
same for cos and tan
so there is nothing difficult here ( or m i missing something ? )
for Sn, tr=x3r-2, tr+1=x3r+1
tr+1=x3tr
so Sn=x+x4+x7+x10+..... =x(1-x6n)1-x3
for Cn, similarly tr+1=x3tr
so Cn=x2+x5+x8+x11+..... =x2(1-x6n)1-x3
similarly
Tn= x3(1-x6n)1-x3
now since x ε (0 , Π/4)
i.e x > 0 and x < 1
so x > x2 > x 3, so Sn > Cn > Tn
so Sn + Cn + Tn = (x+x2+x3)(1-x6n)1-x3 = x(1+x+x2)(1-x6n)1-x3 =x(1-x6n)1-x
so lim n ->∞ Sn + Cn + Tn = x1-x