\hspace{-16}$If $\bf{f(x)=\frac{x^2}{1+x^2}.}$ Then Determine value of the following expression\\\\\\ $\bf{f\left(\frac{1}{2000}\right)+f\left(\frac{2}{2000}\right)+...+f\left(\frac{1999}{2000}\right)+f\left(\frac{2000}{2000}\right)+f\left(\frac{2000}{1999}\right)+...+f\left(\frac{2000}{1}\right)}$
-
UP 0 DOWN 0 0 1
1 Answers
Shaswata Roy
·2013-02-28 06:48:34
\inline \dpi{200} f(x)+f(\frac{1}{x}) = \frac{x^{2}}{1+x^{2}}+\frac{\frac{1}{x^{2}}}{1+\frac{1}{x^{2}}} = \frac{x^{2}+1}{x^{2}+1} = 1
Required sum = \inline \dpi{200} [f(\frac{1}{2000})+f(\frac{2000}{1})]+[f(\frac{2}{2000})+f(\frac{2000}{2})]......+f(\frac{2000}{2000})
= 1999 + 1/2
=1999.5
man111 singh Yes .
Upvote·0· Reply ·2013-02-28 07:09:32