f(x) = \begin{cases} 17/3 - x^{3} & \text{ if } x>1 \\ -1-x^{3}& \text{ if } x\in [-1,1] \\ -13/3 - x^{3}& \text{ if } x<-1 \end{cases}
\hspace{-16}\bf{\mathbb{F}}$ind a function $\bf{f:\mathbb{R}\rightarrow \mathbb{R}}$ that satisfy\\\\\\ $\bf{2f(x)+f(-x)=\left\{\begin{matrix} \bf{-x^3-3}\;\;\;,\;x\leq 1\\\\ \bf{7-x^3}\;\;\;,\;x> 1 \end{matrix}\right.}$
-
UP 0 DOWN 0 0 3
3 Answers
rishabh
·2012-05-04 00:33:26
f(x) = 73-x3 ; x>1
= -x3-1 ; x≤1
consider x>1 and replace x→-x and solve both equations and similarly for x≤1
Aditya Bhutra
·2012-05-04 10:13:34