function

\hspace{-16}\bf{\mathbb{F}}$ind a function $\bf{f:\mathbb{R}\rightarrow \mathbb{R}}$ that satisfy\\\\\\ $\bf{2f(x)+f(-x)=\left\{\begin{matrix} \bf{-x^3-3}\;\;\;,\;x\leq 1\\\\ \bf{7-x^3}\;\;\;,\;x> 1 \end{matrix}\right.}$

3 Answers

1
rishabh ·

f(x) = 73-x3 ; x>1
= -x3-1 ; x≤1

consider x>1 and replace x→-x and solve both equations and similarly for x≤1

262
Aditya Bhutra ·

f(x) = \begin{cases} 17/3 - x^{3} & \text{ if } x>1 \\ -1-x^{3}& \text{ if } x\in [-1,1] \\ -13/3 - x^{3}& \text{ if } x<-1 \end{cases}

11
epsilon ·

lol..I am getting f(x) a constant function..

f(x)=17/3!!!
its it right?

Your Answer

Close [X]