answer is
\frac{-1}{3} \left(1 + \frac{1}{x^2} \right)^ \frac{3}{2}.\left\{log \left(1 + \frac{1}{x^2} \right)- \frac{2}{3} \right\}
\int \frac{\sqrt{x^2 + 1}\left\{log( x^2 + 1 ) - 2log x \right\}.dx}{x^ 4}
answer is
\frac{-1}{3} \left(1 + \frac{1}{x^2} \right)^ \frac{3}{2}.\left\{log \left(1 + \frac{1}{x^2} \right)- \frac{2}{3} \right\}
NCERT Misc ex?
Take the x portion inside the root, leaving x3 portion outside. Then you will get √(1+1/x2) . log(1+1/x2) . 1/x3 [Use log property]
Then you take 1+1/x2 = t and proceed.