$\textbf{Here $\mathbf{f(x+a)=\frac{1}{2}+\sqrt{f(x)-(f(x))^2}}$}$\\\\\\ \mathbf{\left(f(x+a)-\frac{1}{2}\right)^2=f(x)-(f(x))^2............................(1)}$\\\\\\ \textbf{Now $\mathbf{x\rightarrow x+a}$,We Get}$\\\\ \mathbf{\left(f(x+2a)-\frac{1}{2}\right)^2=f(x+a)-(f(x+a))^2............................(2)}$\\\\\\ $\mathbf{\left(f(x+2a)-\frac{1}{2}\right)^2=\frac{1}{2}+\sqrt{f(x)-(f(x))^2}-\frac{1}{4}-f(x)+(f(x))^2-\sqrt{f(x)-(f(x))^2}}\\\\\\ \mathbf{\left(f(x+2a)-\frac{1}{2}\right)^2=\left(f(x)-\frac{1}{2}\right)^2}$\\\\\\ \textbf{So $\mathbf{f(x+2a)-\frac{1}{2}=\pm \left(f(x)-\frac{1}{2}\right)}}$\\\\\\ \textbf{\boxed{\boxed{\mathbf{f(x+2a) = f(x)}$}} and $\mathbf{f(x+2a)+f(x)-1=0}$}
Let f(x+a) = 1/2 + √f(x) - (f(x))2
and 0<=f(x)<=1
Then prove that period of y=f(x) is 2a .
-
UP 0 DOWN 0 0 6
6 Answers
man111 singh
·2011-06-09 08:31:52
Shubhodip
·2011-06-10 00:07:35
thoughts for others (though well known)
give example of one such function