2)y=\sqrt{1+2\sqrt{x-x^2}}
\rightarrow \left(\frac{y^2-1}{2}\right)^2=x-x^2
\rightarrow x=\frac{1}{2}+\frac{\sqrt{2y^2-y^4}}{2}
\int\sqrt{1+2\sqrt{x-x^2}}\,dx=xy-\int \frac{1}{2}+\frac{\sqrt{2y^2-y^4}}{2}\,dy
=xy-\frac{y}{2}-\int \frac{y\sqrt{2-y^2}}{2}\,dy
To solve this integral substitute 2-y2 = z.
On solving you'll find that,
\int\sqrt{1+2\sqrt{x-x^2}}\,dx=xy-\frac{y}{2}+\frac{(2-y^2)^{3/2}}{6}+C