2305
Shaswata Roy
·2013-05-03 09:03:08
1)Let \mathbf{t=x^{-3}}
\rightarrow\mathrm{ d}t= \frac{-3\mathrm{ d}x}{x^{4}}
\rightarrow\mathbf{I=\frac{-1}{3}\int \frac{\mathrm{d} t}{t^{2}+1}}
=\mathbf{\frac{-1}{3}tan^{-1}(t)+C}=\mathbf{\frac{-1}{3}tan^{-1}(x^{3})+C}
2305
Shaswata Roy
·2013-05-03 09:16:58
3)
\mathbf{I = \int 1+tan(x)\cdot tan(x+\theta)\mathrm{d}x}
=\mathbf{\int tan(x+\theta)-tan(x)\times \frac{1+tan(x)\cdot tan(x+\theta)}{tan(x+\theta )-tan(x)}}\mathrm{d}x}
=\mathbf{\int \frac{tan(x+\theta)-tan(x)}{tan(\theta)}}\mathrm{d}x}
The rest can be easily done.