Indefinite

∫(x7m+ x2m + xm).(2x6m + 7xm + 14)1/m.dx

(Have seen these sort of Qn(s) b4 too,,,A hint to start wud be enuf...)

3 Answers

1
Manmay kumar Mohanty ·

given integral can be written as \int (x^{7m}+x^{2m}+x^{m})\frac{(2x^{7m}+7x^{2m}+14x^{m})^{1/m}}{x}dx
= \int (x^{7m-1}+x^{2m-1}+x^{m-1}){(2x^{7m}+7x^{2m}+14x^{m})^{1/m}}dx
put t = (2x^{7m}+7x^{2m}+14x^{m})

now this can be done

29
govind ·

\int (x^{7m} + x^{2m} + x^{m})(2x^{6m}+7x^{m} +14)^{1/m} = \int x^{m}(x^{6m} + x^{m} + 1)(2x^{6m}+7x^{m} +14)^{1/m}

now write
\int x^{m}(x^{6m} + x^{m} + 1)(2x^{6m}+7x^{m} +14)^{1/m} = \int x^{m-1}(x^{6m} + x^{m} + 1)(2x^{7m}+7x^{2m} +14x^{m})^{1/m}

And then substitute xm = t

13
Avik ·

Thnx :)

Your Answer

Close [X]