INTEGRAL

EVALUATE

32 Answers

1
Great Dreams ·

integration by parts will be still messy qwerty can u integrate this
∫tan-1(2tan+1/root3)?????

1
Che ·

thaku sir [1]

1
Manmay kumar Mohanty ·

Thnk u sir. I needed it.

1
rahul nair ·

Thnx Sir

66
kaymant ·

We have
I=\int_0^\pi\dfrac{x}{1+\sin x\cos x}\ \mathrm dx = I_1+I_2
where
I_1=\int_0^{\pi/2}\dfrac{x}{1+\sin x\cos x}\ \mathrm dx
and
I_2=\int_{\pi/2}^\pi\dfrac{x}{1+\sin x\cos x}\ \mathrm dx
Consider I1. Applying a property, we have
I_1=\int_0^{\pi/2}\dfrac{x}{1+\sin x\cos x}\ \mathrm dx =\int_0^{\pi/2}\dfrac{\frac{\pi}{2}-x}{1+\sin x\cos x}\ \mathrm dx
Hence,
2I_1=\dfrac{\pi}{2}\int_0^{\pi/2}\dfrac{1}{1+\sin x\cos x}\ \mathrm dx
So that
I_1=\dfrac{\pi}{4}\int_0^{\pi/2}\dfrac{1}{1+\sin x\cos x}\ \mathrm dx =\dfrac{\pi}{4}J_1
where
J_1=\int_0^{\pi/2}\dfrac{1}{1+\sin x\cos x}\ \mathrm dx =\int_0^{\pi/2}\dfrac{\sec^2x}{1+\tan x+\tan^2x}\ \mathrm dx=\int_0^\infty \dfrac{\mathrm dt}{1+t+t^2}
where the substitution tan x = t has been used.
Complete the square as
t^2+t+1=\left(t+\frac{1}{2}\right)^2+\dfrac{3}{4}
So that
J_1=\int_0^\infty \dfrac{\mathrm dt}{\left(t+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}=\dfrac{2}{\sqrt{3}}\left|\tan^{-1}\dfrac{t+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right|_0^\infty=\dfrac{2}{\sqrt{3}}\left(\dfrac{\pi}{2}-\dfrac{\pi}{6}\right)
=\dfrac{4\pi}{6\sqrt{3}}
Hence, we get
\boxed{I_1=\dfrac{\pi^2}{6\sqrt{3}}}
Next, for I2, first apply substitution
x=y+\frac{\pi}{2}
which gives \mathrm dx=\mathrm dy. Also when x=\pi/2, then y=0 and when x=\pi, then y=\pi/2
Hence, we get
I_2=\int_0^{\pi/2}\dfrac{\frac{\pi}{2}+y}{1-\sin y\cos y}\ \mathrm dy
Apply a property, we get
I_2=\int_0^{\pi/2}\dfrac{\frac{\pi}{2}+\frac{\pi}{2}-y}{1-\sin y\cos y}\ \mathrm dy
Hence,
2I_2=\dfrac{3\pi}{2}\int_0^{\pi/2}\dfrac{1}{1-\sin y\cos y}\ \mathrm dy which gives
I_2=\dfrac{3\pi}{4}\int_0^{\pi/2}\dfrac{1}{1-\sin y\cos y}\ \mathrm dy
This could again be integrated by the substitution tan y = z. The result is
\boxed{I_2=\dfrac{6\pi^2}{6\sqrt{3}}}
Hence, the given integral
\boxed{I=I_1+I_2=\dfrac{7\pi^2}{6\sqrt{3}}}

1
Manmay kumar Mohanty ·

No one's able to get the ans. !!

1
Manmay kumar Mohanty ·

From UTTARA's method,
I_{1}=\int_{0}^{\pi }{\frac{-x(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx

Using f(x) = f(a+b-x) where a,b r limits of integral

I_{1}=\int_{0}^{\pi }{\frac{-(\pi -x)(2sin(\pi -x)cos(\pi -x))}{1- sin^{2}(\pi -x)cos^{2}(\pi -x)}}dx

I_{1}=\int_{0}^{\pi }{\frac{(\pi -x)(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx

I_{1}=\int_{0}^{\pi }{\frac{\pi(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx - \int_{0}^{\pi }{\frac{x(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx

I_{1}=\int_{0}^{\pi }{\frac{\pi(2sinxcosx)}{1- sin^{2}xcos^{2}x}}dx + I_{1}

Yahin pe mein atak gaya hoon. Please koi meri galti point out kar do.

4
UTTARA ·

@Che : Ya I got the same ans

But plzz post ure method also

I want to learn some easier of solving this one ??

1
Unicorn--- Extinct!! ·

A request to all users:- please do not delete your posts if you have wrongly attempted them. You may use these post for your future reference to identify where you went wrong in your first attempt. This will prove you to be really helpful in identifying your mistakes. Plus, this discussion helps other users to understand what mistakes should not be done.

I meant no offence. Just wanted to help all my fellow tiitians.

1
Che ·

i actually got teh soln...not actually mine's but someone else's

ans is \frac{7\pi^{2}}{6\sqrt{3}} $

uttara check if u r getting teh same ans with ur method....i din check it

4
UTTARA ·

2I = \int_{0}^{\Pi }{x\left[2/(1-sin^{2}xcos^{2}x \right]} dx + \Pi \int_{0}^{\Pi }{1/\left(1-sinxcosx \right)}dx

I_{1} = \int_{0}^{\Pi }{x\left[(-2sinxcosx)/(1-sin^2xcos^2x) \right]} dx

3I_{1} = \Pi \int_{0}^{\Pi }{(2sinxcosx)/(1-sin^2xcos^2x)} dx

I_{2}=\Pi \int_{0}^{\Pi }{1/\left(1-sinxcosx \right)}dx = % I_{2} = \int_{0}^{\Pi }{(sec^2x)/(sec^2x - tanx)} dx
I_{2} = \int_{0}^{\Pi }{(sec^2x)/(sec^2x - tanx)} dx

Put tanx = t
sec^2x dx = dt

Now solve I 2

∫1/[(t-1/2)2 +(√3/2)2

Now replace I1 & I 2 in the I eqn and solve for sec^4 x using the formulae

4
UTTARA ·

Again I made a mistake but here is the correction

I1 ≠0

3 I1 = pi ∫[(2sc)/(1 - s^2 c^2 ) dx

4
UTTARA ·

To get the first step i replaced x by pi-x & added both

Repeated the same method for I 1 also

4
UTTARA ·

2I = \int_{0}^{\Pi }{x\left[2/(1-sin^{2}xcos^{2}x \right]} dx + \Pi \int_{0}^{\Pi }{1/\left(1-sinxcosx \right)}dx

I1 = \int_{0}^{\Pi }{x[(-2sinxcosx)/(1-sin^2xcos^2x)]} = \int_{0}^{\Pi }{x[(2sinxcosx)/(1-sin^2xcos^2x)]}

2 I_{1} = 0

I_{2}=\Pi \int_{0}^{\Pi }{1/\left(1-sinxcosx \right)}dx = \Pi \int_{0}^{\Pi }{\left[1/(1-sin^{2}xcos^{2}x)] \right]} dx = {} ∫ [0 t0 pi ] sec^4x

Now replace I1 & I 2 in the I eqn and solve for sec^4 x using the formulae

1
rahul nair ·

ya....I know tht the ans is wrong.
......som1 pls point out the mistake..........

23
qwerty ·

sorry sorry ... realised it when i tried it myself .. lolz [5]

1
Che ·

u hav x in the numerator !

1
Che ·

apply it qwerty then ;)

1
Great Dreams ·

my integrator is giving answer as some hypergeometric function indicating indefiite integral is messy
so some clever sbstituition must finish it off

1
" ____________ ·

ans is 6 .299

1
Che ·

still its rong. :(

1
rahul nair ·

=(\pi/√3)\tan^{-1} (2\pi +1/\sqrt{3})-\pi /6\sqrt{3}

1
rahul nair ·

Another try...................
I=2x/(1+(sinx+cosx)2)
I=2x/(1+(cos^{2}x/2-sin^{2}x/2+2sinx/2.cosx/2)^{2}

2I=2\int_{0}^{\pi }{}
\pi /(1+(cos^{2}x/2-sin^{2}x/2+2sinx/2.cosx/2)^{2}

I=\int_{0}^{\pi }{\pi /(1+(sinx+cosx)^{2})}=\int_{0}^{\pi }{\pi /(2+sin2x)}

1
rahul nair ·

hmm....thts rong.........

1
Che ·

can u jus explain how u got ur I in post 9 i mean the denominater part

thats rong

1
Che ·

how does that help ? btw that does not equal to the denominater

1
rahul nair ·

its wrong Uttara.......a silly mistake again

1
Che ·

ya how u got ur 1st steprahul ?

4
UTTARA ·

@ Rahul : How u got that 1st step ??

1
Che ·

how can u do that ?????

u can though write integral as from 0 to pi/2 + pi/2 to pi

Your Answer

Close [X]