Q12 added [1][1]
1) \int \sqrt{\frac{(1-cos\theta )}{cos\theta (1+cos\theta )(2+cos\theta )}}d\theta
ans..................> cosec^{-1}(2cos^{2}\frac{\theta }{2})+c
[ when solved will add new questions here.]
2) 2) \int \frac{x^{2}}{(xsinx+cosx)^{2}}dx
ans........................>\frac{sinx-xcosx}{cosx+xsinx} + c
Hint : split num. and den. as x cosx and x secx now use by parts
Q3) This one is surely a freak
\int_{0}^{\pi }{ln(1-2acos\theta +a^{2})cosn\theta }d\theta ,where ( a^{2}<1)
nothing mentioned abt ' n '
ans--------> -\frac{\pi a^{n}}{n}
Q4) If f(x) = \int_{0}^{x}{\frac{e^{t}}{t}}dt,x>0
then prove that \int_{1}^{x}{\frac{e^{t}}{(t+\alpha) }}dt=e^{-\alpha }[f(x+\alpha )-f(1+\alpha )]
Q5) \int_{0}^{\pi }{\frac{x^{2}sin2xsin\left(\frac{\pi }{2}cosx \right)}{(2x-\pi )}}dx
ans ------>\frac{8}{\pi }
Q6) \int_{0}^{1}{\frac{dx}{(5+2x-2x^{2})(1+e^{2-4x})}}
ans------> \frac{1}{2\sqrt{11}}ln\left(\frac{1+\sqrt{11}}{\sqrt{11}-1} \right)
Q7) \int_{3n\pi }^{(n^{2}+1)\frac{3\pi }{n}}{\frac{4x}{\left[(a^{2}+b^{2})+(a^{2}-b^{2})cos\frac{2nx}{3} \right]^{2}}}dx [ a,b >0 and n \epsilon I ]
ans---->\frac{9\pi ^{2}(2n^{2}+1)(a^{2}+b^{2})}{4a^{3}b^{3}n^{2}}
Q8) Show that \int_{0}^{2\pi }{\frac{dx}{a+bcosx+csinx}} = \frac{2\pi }{\sqrt{a^{2}-b^{2}-c^{2}}}, when, a>\sqrt{b^{2}+c^{2}}>0
Q9) \int \frac{dx}{(sinx+asecx)^{2}},a\epsilon N
Q10) \int_{0}^{\infty }{log\left(x+\frac{1}{x}\right).\frac{dx}{1+x^{2}} } ans...........> \pi log2 solve using by parts consider log wala as first fuct.
Q11) \int cos\left(blog\left(\frac{x}{a} \right) \right)dx
Q12) \int_{0}^{\pi }{\frac{sin^{2}(2n+1)\theta }{sin^{2}\theta }}d\theta...
I know a similar question was asked earilier but can we do that in the similar way that question was done ??