this is solved example in adg
Q)
Evaluate \int_{0}^{1}{}(tx+1-x)^{n}dx where n is a positive integer and 't' is a parameter independent of 'x' .
hence show that \int_{0}^{1}{x^{k}(1-x)^{n-k}}dx=[^{n}C_{k}(n+1)]^{-1}
-
UP 0 DOWN 0 0 1
Q)
Evaluate \int_{0}^{1}{}(tx+1-x)^{n}dx where n is a positive integer and 't' is a parameter independent of 'x' .
hence show that \int_{0}^{1}{x^{k}(1-x)^{n-k}}dx=[^{n}C_{k}(n+1)]^{-1}