Integration

∫ √(cos2x/sin2x)

8 Answers

39
Pritish Chakraborty ·

\int{\frac{\sqrt{cos2x}}{sinx}}dx = \int{\frac{\sqrt{cos^2x - sin^2x}}{sinx}}dx = \int{\frac{\sqrt{1 - tan^2x}}{tanx}}dx

Let 1 - tan²x = t²

=> -2tanxsec²x = 2tdt
=> -tanxsec²xdx = tdt

Therefore,

\int{\frac{\sqrt{cos2x}}{sinx}}dx = -\int{\frac{t^2}{tan^2xsec^2x}}dt = -\int{\frac{t^2}{tan^2x(1 + tan^2x)}}dt = -\int{\frac{t^2}{(1 - t^2)(2 - t^2)}}dt

Now use fake substitution just for the purpose of partial fractions. Let t² = u.

\frac{u}{(1 - u)(2 - u)} = \frac{A}{1 - u} + \frac{B}{2 - u} \hspace{2mm} \textup{where A and B are found to be 1/2 and -2 respectively.}

So,

-\int{\frac{t^2}{(1 - t^2)(2 - t^2)}}dt = -[\frac{1}{2}\int{\frac{dt}{1 - t^2}} - 2\int{\frac{dt}{2 - t^2}} ]

Now it's easily integrable. Re-substitute t back when you get the answer.

1
Aniket Ghosh Dastidar ·

i guess the value of A wud be 1 instead of 1/2....thanx a lot anywayz

1
Aniket Ghosh Dastidar ·

1)∫ dx/{x2(x4+1)3/4}

2) I=∫ex.dx/e4x+e2x+1 and J=∫ e-x.dx/e-4x+e-2x+1 then J-I=?

1
" ____________ ·

\int \frac{dx}{x^2 ( x^4 + 1)^\frac{3}{4}}

\int \frac{dx}{x^2 .x^3( 1 + \frac{1}{x^4})^\frac{3}{4}}

\int \frac{dx}{x^5( 1 + \frac{1}{x^4})^\frac{3}{4}}

put

\frac{1}{x^4} = t

\frac{-4}{x^5} dx = dt

\frac{dx}{x^5} = \frac{-dt}{4}

integral reduces

\int \frac{ -dt }{4( 1+ t)^\frac{3}{4}}

which u can easily do !!!!

1
" ____________ ·

2nd one

IIT JEE 2008 question

plz see dis

copied from fiitjee sols !!!!!!

1
Manmay kumar Mohanty ·

To post #4
Q1)
Put t4x4 = 1 + x4
→ t4 = 1 + x- 4
→ 4t3dt = - 4x- 5dx
→ t3 dt = - x- 5dx
now integral reduces to
\int x^{-2}(1+x^{4})^{-3/4}dx = \int x^{-2}(t^{4}x^{4})^{-3/4}dx
\Rightarrow \int x^{-5}t^{-3}dx=-\int t^{-3}(-x^{-5})dx=\int t^{-3}t^{3}dt=\int dt=t+c

where t = 41+x- 4

1
Manmay kumar Mohanty ·

Q2)
for I use ex = t and for J use e-x = u and then converting into perfect squares
use property \int \frac{dx}{x^{2}+a^{2}}=\frac{1}{a}tan^{-1}\frac{x}{a}+c

I hope that will do.

1
Aniket Ghosh Dastidar ·

ok thanxx

Your Answer

Close [X]