Use Leibniz formula to differentiate the function \phi '(x) = -log_{1/3} x = log_{3}x..
now for minima we need to equate \phi '(x) = 0 ..so
log_{3}x = 0 ...
log_{3}x = \frac{log_{e}x}{log_{e}3} ...so ..\phi ''(x) = \frac{1}{xlog_{e}3} > 0
so x= 1 is a point of minima....