u r right........akand.......gud job........
21 Answers
Terminator
·2009-02-23 08:28:51
Answer :
Let x=tanθ => dx=sec2θ
so integrand changes.....to.........
0∫ π/4 log(1+tanθ).sec2θ.dθ/1+tan2θ
Let I=0∫ π/4 log(1+tanθ).dθ
=0∫ π/4 log(1+ tan(π/4 - θ).dθ
=0∫ π/4 log(1 + 1- tanθ/1+tanθ)dθ
=0∫ π/4 log(2/1+tanθ).dθ
=0∫ π/4 log2 - 0∫ π/4log (1+tanθ).dθ
2I =0∫ π/4 log2
I=Ï€/8 log2
Got it!!!!!!
Terminator
·2009-02-23 08:17:00
akand te answer is π/8log2 .......[1][1][1][1][1].....ya der is a mistake....
Akand
·2009-02-23 07:34:09
k ..
use ilate...
we get I= log(1+x)tan-1x-∫tan-1x/(1+x)
= log(1+x)tan-1x+tan-1xlog(1+x)-I
2I=(2log2)∩/4
I=(log2)∩/4
Akand
·2009-02-23 07:27:13
cos there is no 'dx'..!!!! hehe just kiddin k im trying dont worry and dont scold me...