cos5x + sin5x = (cosx+sinx) [ cos4x-cos3xsinx+cos2xsin2x-cosxsin3x+sin4x]
= (cosx+sinx) [ (cos2x+sin2x)2 - cos2x sin2x - cosx sinx (cos2x + sin2x)]
= (cosx+sinx) (1 - cosx sinx - cos2x - sin2x)
Therefore I = ∫ (sinx + cosx)dx / (1+2sinx cosx) (1-cosx Sinx - cos2x Sin2x)
Put Sinx - cosx =t, so that
(cosx + sinx) dx = dt , and
t2 = 1-2sinx cosx
I = ∫ dt / (2 - t2) [ 1 - (t2-1) / 2 - (t2-1)2 / 4]
I = 4 ∫ dt / (2-t2) (5-t4)
Using partial fraction,
I = ∫ [ 1 / (2-t2) + 1 / (2-√5) (1/2√5) (1 / √5- t2) + (1 / 2+√5) (1/2√5) (1 / √5 + t2) ] dt
=√2 log|(√2 + t) / (√2-t) | (1 / 2-√5) (1 / 5 3/4 ) log | (5 1/4 + t) / (5 1/4 - t) | + (1 / 2+√5) (2 / 5 3/4) tan -1 (t / 5 1/4) + C