g(x) = ox∫cos4tdt
= (1/4)*∫(1+cos2t)2dt
= (1/4)∫1+2cos2t + (1+cos4t)/2 dt
= (1/4) [3t/2+sin2t+(sin4t)/8]xo
= (1/4) [3x/2+sin2x+(sin4x)/8]
So g(x+Ï€) = (1/4)[3x/2+sin2x+(sin4x)/8 + 3Ï€/2]
= g(x)+g(Ï€)
hence (a)
g(x) = ∫ cos4t dt , then g(x+π ) = ? { lower limit =0 upper limit= x}
a. g(x) + g(Ï€)
b. g(x) - g(Ï€)
c.g(x) *g(Ï€)
d. g(x)/g(Ï€)
g(x) = ox∫cos4tdt
= (1/4)*∫(1+cos2t)2dt
= (1/4)∫1+2cos2t + (1+cos4t)/2 dt
= (1/4) [3t/2+sin2t+(sin4t)/8]xo
= (1/4) [3x/2+sin2x+(sin4x)/8]
So g(x+Ï€) = (1/4)[3x/2+sin2x+(sin4x)/8 + 3Ï€/2]
= g(x)+g(Ï€)
hence (a)