Let n = p (for convenience)
I = ∫2 (sin2 px) / 2(sin2x) dx
= 1/2 ∫(1-cos px)/(sin2x) dx
= 1/2 [ - cot x - ∫ cos px/(sin2x) dx ]
∫ cos px/(sin2x) dx = -cotx cospx + p ∫ cotx sinpx dx
∫ cotx sinpx dx = - cos px (1/p) cotx - ∫1/p cos px cosec2x dx
NOW
∫ cos px/(sin2x) dx = -cotx cospx + p [- cos px (1/p) cotx - ∫1/p cos px cosec2x dx ]
=> - ∫ cos px/(sin2x) dx ] = 0
=> I = -1/2 cot x
( A bit confusing & may have mistakes but i hope itz correct!!)