\int d\frac{\sin x-x\cos x}{x\sin x+\cos x}
=\frac{\sin x-x\cos x}{x\sin x+\cos x}
4 Answers
xYz
·2010-03-13 05:48:50
Pritish Chakraborty
·2010-03-13 07:38:44
This can be done by parts also...will post soln in a while.
rahul nair
·2010-03-13 08:39:28
I=\int xsecx(xcosx/(xsinx+cosx)^{2})dx
xsecx=1st func.,
(xcosx/(xsinx+cosx)^{2})=2nd fn
integrate by parts..........
I=xsecx(-1/(xsinx+cosx)-\int (secx+xsecxtanx)(-1)/(xsinx+cosx)dx
I=-xsecx/(xsinx+cosx)+tanx+c