integration problems..........

i have open this thread to discuss integration questions ... so post questions and we will discuss it...........

19 Answers

1
nihal raj ·

thanxxxxx

1708
man111 singh ·

$Tush can u explain it.....

11
Tush Watts ·

Ans ) I am getting

\ln \left|1 + x \right|\ - 2 \left[\frac{1}{x^{2}}- \frac{\tan^{-1} (x^{2}-1)}{x^{2}} \right]

Is it correct ?

1
vinodpunia1983 punia ·

∫x2-2x3x2-1 dx

plz help me out in this question!!

1
vinodpunia1983 punia ·

http://targetiit.com/latex/editor.php?target=message&html

1708
man111 singh ·

1708
man111 singh ·

1
sahil jain ·

nihal ,the best way z the graphical approach,the graphical meaning of integration.we'll discuss it in class. Waise maine tmhe hint de diya hai

1
nihal raj ·

0∫2pie !cosx- sinx!

! ! REPRESENT MODULUS....

I HAVE GOT SOME IDEA BUT IT IS TOO LONG....

1
sahil jain ·

abe nihal, dude this thread z realy good n helpful,dont close or try to avoid this thread, i m with u man.

1
nihal raj ·

∫ tan4x sec2xx . dx

23
qwerty ·

# 8

1] ∫dx1+tanx = ∫cosxsinx+cosxdx = ∫cosx+sinx + cosx - sinx 2(sinx+cosx)

= x2 + ∫ cosx - sinx dx2(sinx+cosx)

put sinx+cosx = t

2] ∫1+sinx-1 dx1+sinx =∫√1+sinxdx - ∫11+sinx dx

now use 1+sinx = (sinx2+cosx2)2= 2sin2(x2+Ï€4)

3] put cosx = t

4]∫dxsinxcos3x = ∫sec4xtanx dx = ∫ (1+tan2x)sec2xtanxdx

put tanx = t

5]∫sec3/4x cosec5/4x dx = ∫dxsin5/4x cos3/4x =∫ dxsin5/4xcos5/4xcos3/4xcos5/4 = ∫ sec2xdxtan5/4x

put tanx = t

23
qwerty ·

#7

1] x3-1 = t3

x2dx = t2dt

so I = ∫ (x3-1)1/3 x5 .dx = ∫t (t3+1)t2dt = ∫t6+t3 dt

2] ex - 1 = t
exdx = dt
dx = dtt+1

I = ∫dtt(t+1)

3] ex+1 = t

exdx = dt

dx = dtt-1

I = ∫t-2t(t+1) dt

4] put sin(x3) = t

1
nihal raj ·

1) ∫11+ tanx dx

2) ∫ sinx1 + sinxdx

3) ∫ cos9xsinxdx

4) ∫ dxsinx.cos3x

5) ∫ sec3/4x . cosec5/4x.dx

1
nihal raj ·

a) ∫ (x3-1)1/3 x5 .dx

b) ∫1ex-1dx

c) ∫1 - ex1 + ex dx

d) ∫x2.sin3(x3).cosx3. dx

11
sagnik sarkar ·

Put tan √x=z thus dz=sec^2 (√x)[1/2√x]dx
Thus I=2∫z^4 dz
=2/5 z^5
=2/5 (tan^5(√x) ).(ans)

1
nihal raj ·

u r right....but i is an imaginary no. and expressing in terms of i

that is, I=12i logx - ix+ i + c

is contradictory......

1
saikat007 mukherjee ·

WE KNOW,
I=∫dx1+x2= tan-1x + c
now,
I=∫dx1+x2= ∫dxx2-i2
or, I=12ilog(x-ix+i) + c

1
saikat007 mukherjee ·

put x=z2 so dx=2zdz
or I=2∫tan4zsec2zdz
now put, tanz=t so dt=sec2zdz
or I=2∫t4dt=25 (tan√x)^5 + c

Your Answer

Close [X]