r^{2}x \leq [r^{2}x] < r^{2}x+1
=> \sum_{1}^{n}{r^{2}x} \leq \sum_{1}^{n}{[r^{2}x]} < \sum_{1}^{n}{r^{2}x+1}
=> \frac{nx(n+1)(2n+1)}{6} \leq \sum_{1}^{n}{[r^{2}x]} < \frac{nx(n+1)(2n+1)}{6}+n
=> \lim_{n\rightarrow \infty }\frac{nx(n+1)(2n+1)}{6n^{3}} \leq \lim_{n\rightarrow \infty }\frac{\sum_{1}^{n}{[r^{2}x]}}{n^{3}} < \lim_{n\rightarrow \infty }\frac{nx(n+1)(2n+1)}{6n^{3}}+\frac{1}{n^{2}}
=> \frac{x}{3} \leq \lim_{n\rightarrow \infty }\frac{\sum_{1}^{n}{[r^{2}x]}}{n^{3}} < \frac{x}{3}
So the required limit is \frac{x}{3}