using x→∞ lim (sin x)/x = 0
the answer comes to be 1
evaluate the limit:
\lim_{x\rightarrow \propto } \frac{x^{2}(1+sin^{2}x)}{(x+sinx)^{2}}
i am not getting any answer
\lim_{x\rightarrow \propto } \frac{x^{2}(1+sin^{2}x)}{(x+sinx)^{2}} \Rightarrow lim_{x\rightarrow \propto } \frac{x^{2}(1+sin^{2}x)}{x^{2}(1+\frac{sinx}{x})^{2}} \Rightarrow \lim_{x\rightarrow \propto } (1+sin^{2}x)
plz tell where's my mistake
is my answer correct?
given expression can be written as
x^4 (1/x2 + sin2x/x2)/ x2 (1 + sin x /x )2
putting limits
x^4(1/x2 )/x2 = x2 / x2 = 1