limit

lim cos(pi√(n2 + n))
n→∞

9 Answers

1
harsh jindal ·

ans is cos( n*pi + pi/2)=0
0

1
Euclid ·

subhi is not 'n' an integer?? i think it is...

\lim_{x\rightarrow infinity} cos(n\pi \sqrt{1 +1/n}) = \lim_{x\rightarrow infinity} cos(2n\pi - n\pi \sqrt{1 +1/n}) = \lim_{x\rightarrow infinity} cos{n\pi (\frac{4-1-1/n}{2 + \sqrt{1 + 1/n}}} = \lim_{x\rightarrow infinity} cos{n\pi(-3/2n)} = \lim_{x\rightarrow infinity} cos(-3\pi /2) = 0

1
shubhi gupta ·

hey n is not an integer it is not a finite number

1
harsh jindal ·

if n is not an integer then limit does not exist

1
shubhi gupta ·

rehnde........ it lies between -1 and 1

1
harsh jindal ·

hey listen
if n is real number and n→∞ then graph of \Pi \left(\sqrt{n^{2}+n} \right) is continuous and strictly increasing so cos\left( \Pi \left(\sqrt{n^{2}+n} \right) \right) continuously varies betwean -1 to 1

1
shubhi gupta ·

so limit toh exist karegi.... aur answer bhi 0 de rakha h

1
harsh jindal ·

0 comes only at integral values of n otherwise doesn't exists......

1
shubhi gupta ·

plz explain 4-5 step of the solution

Your Answer

Close [X]