see i don't hv the ans....but u r rite .... its comming sin 2b 2b........
17 Answers
first problem just take √x in the denominator and and put its limit you will get answer.
soln!!
\lim_{x\rightarrow\propto}\frac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}}=\lim_{x\rightarrow\propto}\sqrt{\frac{x}{x+\sqrt{x+\sqrt{x}}}}=\lim_{x\rightarrow\propto}\sqrt{\frac{x+\sqrt{x+\sqrt{x}}-\sqrt{x+\sqrt{x}}}{x+\sqrt{x+\sqrt{x}}}}=\lim_{x\rightarrow\propto}\sqrt{1-\frac{\sqrt{x+\sqrt{x}}}{x+\sqrt{x+\sqrt{x}}}}=\lim_{x\rightarrow\propto}\sqrt{1-\frac{\sqrt{\frac{1}{x^{\frac{1}{2}}}+\frac{1}{x^{\frac{3}{2}}}}}{1+\sqrt{\frac{1}{x^{\frac{1}{2}}}+\frac{1}{x^\frac{3}{2}}}}}=1
in 2nd problem after putting the limits ans shud be... sin 2bb na.......
for 1) \lim_{x\rightarrow\propto}\frac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}}
this is the intended proble right??
f(a) = sin2 a - sin2 ba2 - b2 = (sin a + sin b)(sin a - sin b)(a + b)(a - b) = (sin a + sin b) 2sin(a - b)2cos(a+b)22.(a - b)2
=(sin a + sin b) sin(a - b)2cos(a+b)2(a+b)(a - b)2
in the limit a→b
f(a→b) = sin bb.1.cos b = sin 2bb
@ subhomoy ...thnx.....
......am so used to 1∞ form that...took this one to be same..... :D
the last question is::
\lim_{x\rightarrow a }\left(2-\frac{a}{x} \right)^\frac{{tan \Pi x}}{2a}
soln:: the bracket term is coming to be 1!!
so the answer must be 1!!!! [1] isn't it?
go to latex....the equation arises right click and select copy image link/url
then come to the message box and select image link and paste the copied image url by right click and paste option!!! :)
\lim_{x\rightarrow a }\left(2-\frac{a}{x} \right)^\frac{{tan \Pi x}}{2a}