limit

lim x→∞ xx+√x+x

17 Answers

1
Hodge Conjecture ·

yup.....

1
Hodge Conjecture ·

see i don't hv the ans....but u r rite .... its comming sin 2b 2b........

1
jangra28192manoj jangra ·

answer of 2nd question must be sin2b/2b

1
jangra28192manoj jangra ·

first problem just take √x in the denominator and and put its limit you will get answer.

49
Subhomoy Bakshi ·

u r welcome!! [1]

1
Hodge Conjecture ·

thnx...............

49
Subhomoy Bakshi ·

oops! yes,,now edited the 2nd prob!!

49
Subhomoy Bakshi ·

soln!!

\lim_{x\rightarrow\propto}\frac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}}=\lim_{x\rightarrow\propto}\sqrt{\frac{x}{x+\sqrt{x+\sqrt{x}}}}=\lim_{x\rightarrow\propto}\sqrt{\frac{x+\sqrt{x+\sqrt{x}}-\sqrt{x+\sqrt{x}}}{x+\sqrt{x+\sqrt{x}}}}=\lim_{x\rightarrow\propto}\sqrt{1-\frac{\sqrt{x+\sqrt{x}}}{x+\sqrt{x+\sqrt{x}}}}=\lim_{x\rightarrow\propto}\sqrt{1-\frac{\sqrt{\frac{1}{x^{\frac{1}{2}}}+\frac{1}{x^{\frac{3}{2}}}}}{1+\sqrt{\frac{1}{x^{\frac{1}{2}}}+\frac{1}{x^\frac{3}{2}}}}}=1

1
Hodge Conjecture ·

in 2nd problem after putting the limits ans shud be... sin 2bb na.......

1
Hodge Conjecture ·

lim a→b sin2a - sin2ba2 - b2

49
Subhomoy Bakshi ·

for 1) \lim_{x\rightarrow\propto}\frac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}}

this is the intended proble right??

49
Subhomoy Bakshi ·

f(a) = sin2 a - sin2 ba2 - b2 = (sin a + sin b)(sin a - sin b)(a + b)(a - b) = (sin a + sin b) 2sin(a - b)2cos(a+b)22.(a - b)2
=(sin a + sin b) sin(a - b)2cos(a+b)2(a+b)(a - b)2

in the limit a→b

f(a→b) = sin bb.1.cos b = sin 2bb

1
Hodge Conjecture ·

@ subhomoy ...thnx.....

......am so used to 1∞ form that...took this one to be same..... :D

49
Subhomoy Bakshi ·

the last question is::

\lim_{x\rightarrow a }\left(2-\frac{a}{x} \right)^\frac{{tan \Pi x}}{2a}

soln:: the bracket term is coming to be 1!!

so the answer must be 1!!!! [1] isn't it?

49
Subhomoy Bakshi ·

go to latex....the equation arises right click and select copy image link/url

then come to the message box and select image link and paste the copied image url by right click and paste option!!! :)

1
Hodge Conjecture ·

how can i post latex equation in readable form?

1
Hodge Conjecture ·

\lim_{x\rightarrow a }\left(2-\frac{a}{x} \right)^\frac{{tan \Pi x}}{2a}

Your Answer

Close [X]