Limiting the Limit

Find the value of -

btw...why is latex not working ?

7 Answers

1
b_k_dubey ·

lnL=\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{r=1}^{n}{\frac{r}{n}ln\frac{r}{n}}

lnL=\int_{0}^{1}{x\: lnx\: dx}=-\frac{1}{4}

L=e^{-\frac{1}{4}}

49
Subhomoy Bakshi ·

sir can u elaborate a bit more??plzzz...[1]

no latex is working again....refresh page avik 4 better use...[1]

13
Avik ·

Thanks Bipin Bhaiya [1]

@atgs... just take log both sides & expand, it will reduce to the form of limit of a sum, fir simple integral hai. [1]

13
Avik ·

2 more, might be simple, but am not getting them...

2) Lim(n→∞) (n+4)!/n!

3) Lim(x→0) x2.Sin(1/x)

P.S. I do not have the answers.

1
" ____________ ·

is the ans -- 0

my [ mostly wrong ] metod

\lim_{x\rightarrow 0} x^2 .sin\left(\frac{1}{x} \right)

\lim_{x\rightarrow 0} x^2 .\frac{sin\left(\frac{1}{x} \right)\frac{1}{x}}{\frac{1}{x}}

\lim_{x\rightarrow 0} x = 0

1
Che ·

ya thats wrong

limx→a sinf(x)f(x) is only eqaul to 1 wen f(x)→0 wen x→a

here 1/x →∞ wen x→0

1
Anirudh Kumar ·

3)

lim = 0

x2→0 while Sin(1/x) is bounded between [-1,1].
thus limit is zero .

2) lim (n→∞) (n+4)!n! = ∞

Your Answer

Close [X]