limits need help ...

lim x→0 [(sin signum(x))/signum(x)] where [] is GIF?? options are given
(a)0 (b)1 (c)1/2 (d) does nt exsist

Q2 Let {x} denote the fractional part of x then lim x→0 ({x})/tan({x}) is equal to=??

Q3. lim x→0 (1-cos(1-cosx))/x4=?

12 Answers

1
ajoy abcd ·

Q3. 1/8?

1
ujjwalkalra kalra ·

ajoy cn u plz explain hw u gt it....but i hope u hve nt used L hospital rule

106
Asish Mahapatra ·

no need to use LH rule directly..
u can write (1-cosx) = 2sin2(x/2) and evaluate

1
jangra28192manoj jangra ·

answer of 2nd question i d
doen not exist

1
ujjwalkalra kalra ·

give proof

1
jangra28192manoj jangra ·

is my answer is correct

1
ujjwalkalra kalra ·

yup

1
lanuk ·

is d ans for d first one 0?????????

and yes jangra2819.........please explain ur ans.......

1
jangra28192manoj jangra ·

ans of 1st question is zero

1
jangra28192manoj jangra ·

1
deblina4 ·

i thnk ans of 1st one is 0 bcz signum(x)=1,-1,0 so [sin(1)/1]=0 nd [sin(-1)/-1]=0 nd sme fr sin o nd 1<∩/2 so [sin (1)/1] is 0

1
Euclid ·

1) ans (a)
LHL=RHL= [(sin1)/1]=0

2) ans --> doesn't exist... since LHL= 1/tan1 and RHL=1

3) lim 1 - cos(1-cosx)(1-cosx)2 . {(1-cosx)/x}2
x-->0

=(1/2). 1/4 = 1/8

remember lim 1-coskxx2= k2/2
x-->0

Your Answer

Close [X]