Let L = \lim_{x\rightarrow 0} (1+3x)^{10/x}
log( L) = \lim_{x\rightarrow 0} \frac{10*log(1+3x)}{x}
log( L) = 30 \lim_{x\rightarrow 0} \frac{log(1+3x)}{3x}
log( L) = 30
L = e^{30}
Let L = \lim_{x\rightarrow 0} (1+3x)^{10/x}
log( L) = \lim_{x\rightarrow 0} \frac{10*log(1+3x)}{x}
log( L) = 30 \lim_{x\rightarrow 0} \frac{log(1+3x)}{3x}
log( L) = 30
L = e^{30}