lmmits

LIMITs

13 Answers

39
Dr.House ·

given limit = elimx→a[2-x/a -1 ]tan πa/2x [ the limit is in the power of e]

limx→a {1-x/a}tan πa/2x =limx→a tan πx/2a / a/a-x this is of the form ∞/∞ and can be evaluated by l hospital`s rule.

39
Dr.House ·

i think the limit does not exist as on continuosly using l`hospital`s rule its remaining in ∞/∞ form

whats the answer rohit?

1
RAY ·

even i got that.........though i wasnt sure..as it was a skul paper.............dunno d answer,,,,dude,,,thanxn....

1
RAY ·

yah..i proved by both ways..that limits doesnt exist..make it of d form

1 + f(x).........

1
mkagenius ·

i m getting e2/Î

1
mkagenius ·

hint take tanx=sinx/cosx.....then apply l hospitals to (1-x/a)/cosx (0/0 form)....it will be 2/Î ...hence the answer..

341
Hari Shankar ·

Limx→a [1 + (1- x/a)]tan (πx/2a)

= Lim1-x/a→0 [1 + (1- x/a)]1/(1-x/a)tan (πx/2a) (1-x/a)

= eLim x→a tan (πx/2a) (1-x/a)

Now, Lim x→a tan (πx/2a) (1-x/a)

= Limπ/2 (1-x/a)→0 [π/2 (1-x/a)]/[tan π/2 (1-x/a)] * 2/π

= 2/Ï€

Hence, the given limit is 2/Ï€

1357
Manish Shankar ·

Rohit......Regarding your doubt in last part

lim(x→a) tan(πx/2a) (1-x/a)

lim(x→a) (1-x/a)/ cot(πx/2a)

lim(x→a) (1-x/a)/ tan(π/2-πx/2a)

let π/2(1-x/a)=t

it becomes

lim(t→0)(2/π)(t/tant)

1
RAY ·

okkies...samaj gaya..thanx bro.......

1
mkagenius ·

kya bhaiya! mere answer ko kabhi kabhi pink kar dijiye...
...:)
arey bhai! confidence badhta hai...:)

1357
Manish Shankar ·

ok dude

1
mkagenius ·

thanks DUDE!

1
Telakadan ·

thanks buddy!!!!!!!!!!!!!!

Your Answer

Close [X]