106
Asish Mahapatra
·2009-05-27 21:57:00
are the two equations these?
y=\sqrt{\frac{1+sinx}{1-sinx}}-secx
y=-\sqrt{\frac{1-sinx}{1+sinx}}+secx
106
Asish Mahapatra
·2009-05-27 22:16:02
the first equation is y = lsecxl+ltanxl-secx
second equation is y= -lsecxl+ltanxl+secx
they two coincide when lsecxl+ltanxl-secx=-lsecxl+ltanxl+secx
i.e. lsecxl = secx
this is possible when secx is positive i.e.
x= [-2Ï€,-3Ï€/2)U(-Ï€/2,Ï€/2)U(3Ï€/2,2Ï€]
62
Lokesh Verma
·2009-05-28 08:35:45
y=\sqrt{\frac{1+sinx}{1-sinx}}-secx
y=-\sqrt{\frac{1-sinx}{1+sinx}}+secx
their graphs coincide means that they are the same for all values of x.
so this means that
\sqrt{\frac{1+sinx}{1-sinx}}-secx =-\sqrt{\frac{1-sinx}{1+sinx}}+secx
\sqrt{\frac{1+sin x}{1 - sin x}}+\sqrt{\frac{1-sin x}{1+sin x}}=2 sec x\Rightarrow \sqrt{\frac{1+sin x}{1 - sin x}}+\sqrt{\frac{1-sin x}{1+sin x}}=2 sec x \\ \Rightarrow {\frac{|1+sin x|+|1-sin x|}{\sqrt{1 - sin^2 x}}}=2 sec x\\ \Rightarrow {\frac{|1+sin x|+|1-sin x|}{\sqrt{cos^2 x}}}=2 sec x\\ \Rightarrow {\frac{|1+sin x|+|1-sin x|}{|cos x|}}=2 sec x\\ \Rightarrow {|1+sin x|+|1-sin x|}=2\frac{|cos x|}{cos x} \\ \Rightarrow {1+sin x+|1-sin x|}=2\frac{|cos x|}{cos x} \\
The last step is because 1+sin x is positive always..
62
Lokesh Verma
·2009-05-28 08:36:57
also , |1-sin x| is always +ve so you can remove that too
thus cos x = |cos x| is what you have to solve :)