Ltx→0Ltn→∞1n3∫nr=1[r2 (sin x)x] ,[x] is greatest integer fn2 ;∫ is summation
-
UP 0 DOWN 0 0 2
2 Answers
Aditya Bhutra
·2011-06-23 03:20:45
x-1<[x]≤x
hence
let sinx x =z
(r2z )-1 <[r2 .z] ≤ r2z
taking summation on all sides,
(n(n+1)(2n+1)6 .z )- n < sum[r2 .z] ≤ (n(n+1)(2n+1)6 .z )
taking limits , n→∞
1.(1+1/n)(2+1/n)6 .z - 1/n2 < sum[r2 .z] <1.(1+1/n)(2+1/n)6 .z
therefore
z/3 < sum[r2 .z] ≤ z/3
hence limn→∞ sum[r2 .z] = z/3 = sinx x
now next part
limx→0 sinx x =