15.∫√1+√x1−√xdx=∫√1−x1−√xdx
Let sin2θ = x
∫cosθ1−sinθ2sinθcosθdθ
=2∫sinθdθ−2∫sin2θdθ
=−2cosθ−2∫21−cos2θdθ
=−2cosθ−θ+2sin2θ+C
=−2√1−x−sin−1√x+2√x√1−x+C
15.∫√1+√x1−√xdx=∫√1−x1−√xdx
Let sin2θ = x
∫cosθ1−sinθ2sinθcosθdθ
=2∫sinθdθ−2∫sin2θdθ
=−2cosθ−2∫21−cos2θdθ
=−2cosθ−θ+2sin2θ+C
=−2√1−x−sin−1√x+2√x√1−x+C
each and every book i look into i get the 15 number sum ......sir u have even given it in shastras..can u plzzz given the solution ?
Take x= cos2θ
thn its coming - log( cosθ)
Sustitute for θ nd u get the ans...
For 12,..
-cosa.sin-1(cos xcos a)-sina.log|sin x-√sin2x-sin2a|+C
??
13)∫sin−11/3x⋅cos−1/3xdx
=∫tan−11/3x⋅sec4xdx
=∫tan−11/3x(1+tan2x) dtanx
=−83tan−8/3−23tan−2/3x+C
∫√sin4θ+cos4θ−cos2θsin2θtan2θdθ
=∫√tan4θ+1−tan2θ1−tan2θ2tanθ⋅sec2θdθ
Substituting tan2θ=z,
I=∫(1−z)√z2+1−zdz
Substituting 1-z=1t,
I=∫t1√(1−t1)2+1−(1−t1)t21dt
=∫√t2−1+tdt
=∫√(t−21)2−45dt
=√51ln∣t−21+√t2−1+t∣+C