solve this

1.1.4 and 5

4 Answers

11
virang1 Jhaveri ·

So,lim(x→a)f(x)=-1

106
Asish Mahapatra ·

Q1.1.4 Let lim(x→a)f(x) = -y (y>0)
then frm given condition, we have -y+1/y=0
or y2=1
or y=1 (y>0)

So lim(x→a)f(x) = -1

(thx virang)

62
Lokesh Verma ·

take x=1/ar x0

when x tends to zero... r becomes very large

use this recurrsively in the expression to get

f(x) = b-r f(x0)

so, limit x-> f(x) = lim r-> infinity b-r f(x0)

which gives zero :)

24
eureka123 ·

1.1.3

\lim_{x\rightarrow 0}[f(x)+\frac{1}{f(x)}]=2
=>\lim_{x\rightarrow 0}f(x)+\lim_{x\rightarrow 0}\frac{1}{f(x)}=2
=>\lim_{x\rightarrow 0}f(x)+\frac{1}{\lim_{x\rightarrow 0}f(x)}=2
Now take \lim_{x\rightarrow 0}f(x)=t
and solve the quadratic eqn

Your Answer

Close [X]