some integrals

evaluate !!!!!!!!!!!!!!

1.

\int \frac{3x ^2 - 7 dx}{ (x^2 -4) ( x^2 + 1 ) }

2 .
\int \frac{ dx}{ x.\sqrt{x^6 + 1} }

3.

\int \frac{ \sqrt{x} dx}{(1+ x^2)^{\frac{7}{4}}}

just practice problems [1]

11 Answers

39
Pritish Chakraborty ·

21
eragon24 _Retired ·

for 3rd one substitute \sqrt{x}=z

so we get integral of form 2\int z^2(1+z^4)^{-7/4}dz

now substitute t=\left(1+z^{-4} \right)^{\frac{1}{4}}

this is analogous to integral of form \int x^m(a+bx^n)^pdx

if \left(\frac{m+1}{n}+P \right) is an integer and P is a fraction we put a+bx^n=t^kx^n wer k is deno of fraction P

1
Great Dreams ·

2nd one
-\int \frac{x^3.dx}{-x^7\left(1+\frac{1}{x^6} \right)^{\frac{1}{2}}} \\ \text{apply parts}\\ -I=2x^3\sqrt{1+\frac{1}{x^6}}-6\underline{\int \left(\frac{\sqrt{1+x^6}}{x} \right)}+C\\ \\ \text{evaluating underlined part}\\ {1+x^6}=z^2\Rightarrow \frac{2z.dz}{6x^5}=dx\\ \int \frac{2z^2.dz}{6(z^2-1)}\text{this can be evaluated easily }

21
eragon24 _Retired ·

for second one

this integral \int x^{-1}(x^6+1)^{-\frac{1}{2}}dx

is analogous to integral of form \int x^m(a+bx^n)^pdx

if \frac{m+1}{n} is an integer and P is a fraction put (a+bx^n)=t^k wer k is teh deno of fraction P

so substitute (1+x^6)^{\frac{1}{2}}=t

341
Hari Shankar ·

Q2: Better to start with x6=t

Q3: let x = tan θ

1
" ____________ ·

thanks everyone for solution

prophet sir ---> thanks a lot for using substitution to 3rd ques .....

plz everyone try this

!!! any other way to solve the ques --2 and- --3-- !!!!1

at the end i will post my solution

29
govind ·

Omkar....these question seems to be from Brilliant YG files..
in the second one substitute x^{3} = t
3x^{2}dx = dt

then u will get \frac{1}{3}\int \frac{dt}{t\sqrt{t^{2}+1}}

then substitue t^{2}+1=z^{2}

tdt = zdz

then u will get

1/3*\int \frac{dz}{z^{2}-1}

which can be easily integrated now using the formula

1
avra ghosh ·

2. ∫dx/(x4√(1+x-6)) or ∫x-4dx/√(1+(x-3)2) now take x-3=z .....

1
" ____________ ·

yaa govind bhai

\int \frac{dx}{x.\sqrt{x^ 6 + 1}}

let x6+ 1 = t2

6 x5dx = 2.t .dt

dx = t dt 3. x 5

integral reduces to

\int \frac{dt}{x^ 6}

\int \frac{dt}{t^2 - 1} = \frac{1}{3} log\frac{\sqrt{x^ 6 + 1 }-1}{\sqrt{x^ 6 + 1}+ 1 } + c

anyone trying three with a simpler method than eragon

23
qwerty ·

Q3> put \; x=t^{2}

\Rightarrow\; I=\int \frac{2t^{2}dt}{(1+t^{4})^{\frac{7}{4}}}

take t4 common from deno from d bracket

\Rightarrow\; I=\int \frac{2t^{2}dt}{t^{7}(\frac{1}{t^{4}}+1)^{\frac{7}{4}}}

\Rightarrow\; I=\int \frac{2t^{-5}dt}{(\frac{1}{t^{4}}+1)^{\frac{7}{4}}}

now take (\frac{1}{t^{4}}+1)=m, -4t^{-5}dt=dm

\Rightarrow\; I=-\int \frac{dm}{2m^{\frac{7}{4}}}

1
" ____________ ·

yaa qwerty gud one

Your Answer

Close [X]