39
Dr.House
·2009-12-19 05:14:49
may i know from where the q has come??
39
Dr.House
·2009-12-19 05:23:24
get me the general term , then i will help u in proceeding
106
Asish Mahapatra
·2009-12-19 23:32:19
Q2.
log(11+x+x2+x3) = log(1(1+x2)(1+x))
= -(log(1+x) + log(1+x2)
= -(x-x2/2+x3/3-... + x2-x4/2+x6/3-...)
So coeff of xn (if odd) is -1/n
Now if of the form 4m, then -(-1/4m - 1/2m) = 3/4m = 3/n
If of the form 4m+2 then -(-1/(4m+2) + 1/(2m+1)) = -1/(4m+2) = -1/n
66
kaymant
·2009-12-19 23:41:26
The given sum
S=1+\dfrac{1}{3}+\dfrac{1\cdot 3}{3\cdot6}+\dfrac{1\cdot 3\cdot 5}{3\cdot6\cdot 9}+\ldots
=1+\dfrac{1}{3}+\dfrac{1\cdot 3}{3^2\cdot2!}+\dfrac{1\cdot 3\cdot 5}{3^3\cdot 3!}+\ldots
=1-\dfrac{1}{2}\left(\dfrac{-2}{3}\right)+\dfrac{\left(\frac{-1}{2}\right)\left(\frac{-1}{2}-1\right)}{2!}\left(\dfrac{-2}{3}\right)^2+ \dfrac{\left(\frac{-1}{2}\right)\left(\frac{-1}{2}-1\right)\left(\frac{-1}{2}-2\right)}{3!}\left(\dfrac{-2}{3}\right)^3+\ldots
=\left(1-\dfrac{2}{3}\right)^{-1/2}
=\sqrt{3}
24
eureka123
·2009-12-22 19:13:17
upto 2nd step its OK...
but sir plz tell me what was inspiration for 3rd step ??
62
Lokesh Verma
·2009-12-23 04:43:57
I guess the -ve binomial series expansion.
24
eureka123
·2009-12-23 18:43:50
that is obvious....but how did that idea strike ???
and plz not the same answer this time too..PRACTICE [3]
No offence intended[1]