very basic integral

1.evaluate

far practize

11 Answers

1
JOHNCENA IS BACK ·

write in parametric form! denominator becomes sin(x+aplha)

take x+alpha=t and write x=t-alpha.......expand numerator n integrate!

39
Pritish Chakraborty ·

(√cot x) is damn easy job :P

1
" ____________ ·

1. integrate

2.

FOR PRCTC

as alwayz pritish babu has done a nice work !!!!!!!!!!!!!!!!!

1
Manmay kumar Mohanty ·

2) \int \left( sinxlogx-\frac{cosx}{x}\right)dx = \int sinx logx dx- \int \frac{cosx}{x}dx .......(1)
let I1 = \int sinx logx dx
considering sin x as 2nd and log x as first function we have BY USING BY PARTS,
I1 = logx\int sinx+\int \frac{cosx}{x}

now substituting the value of I1 in (1) we get,
\int \left( sinxlogx-\frac{cosx}{x}\right)dx =logx\int sinx+\int \frac{cosx}{x} - ∫cos xx = logx\int sinx
= - logx cosx

1
Manmay kumar Mohanty ·

LONG ONE THOUGH.
\int (\sqrt{tanx }+\sqrt{cotx}) dx = \int \frac{sinx+cosx}{\sqrt{sinxcosx}}dx now put sinx - cosx = t → (cosx + sinx)dx = dt

integral reduces to \sqrt{2}\int \frac{dt}{\sqrt{1-t^{2}}} = \sqrt{2}sin^{-1}t + c = \sqrt{2}sin^{-1}(sinx - cosx ) + c

similarly we find \int (\sqrt{tanx }-\sqrt{cotx})dx = -\sqrt{2}ln\left|sinx+cosx+\sqrt{sin2x} \right|+c

now \int \sqrt{cotx } = \frac{1}{2}\int 2\sqrt{cotx}dx = \frac{1}{2}\int (\sqrt{tanx}+\sqrt{cotx}) - ( \sqrt{tanx}-\sqrt{cotx})dx

subtituting the values of \int (\sqrt{tanx }+\sqrt{cotx}) dx and \int (\sqrt{tanx }-\sqrt{cotx})dx we get \int \sqrt{cotx } = \frac{1}{2}\left[ \sqrt{2}sin^{-1}(sinx-cosx)+\sqrt{2}ln\left|(sinx+cosx)+\sqrt{sin2x} \right|\right]+k,k = integ.constant

1
" ____________ ·

excellent work , manmay dada, & rahul

1
sriraghav ·

whats the solution for 1st question ,
iam getting in the for of

K ∫√1- tan α. cos t dt
where t is x - α

1
Unicorn--- Extinct!! ·

@ pritish...u pinked ur post urself?? [5][3]

1
Manmay kumar Mohanty ·

uska paper hi pink hai yaar......

1
arsh sharma ·

cotx
yaar ise poora toh kar...

1
Manmay kumar Mohanty ·

kiya to hai. PRITISH NE AUR MAINE

Your Answer