acute angle and least value......

\dpi{120} \hspace{-16}(1)::\; $Find acute Angle b/w 2 -Curves $\mathbf{C_{1}:x^2+y^2=8}$ and $\mathbf{C_{2}:x^2+y^2=4x}$.\\\\ (2)::\;Find Least distance b/w the curves $\mathbf{xy=9}$ and $\mathbf{x^2+y^2=1}$.

5 Answers

1
narayan ·

x^2+y^2=8\rightarrow 2x+2y.\frac{dy}{dx} =0\rightarrow x+y\left ( \frac{dy}{dx} \right ) =0\rightarrow \frac{dy}{dx} =\frac{-x}{y}=m_{1}

x^2+y^2=4x\rightarrow 2x+2y\left ( \frac{dy}{dx} \right )=4\rightarrow x+y\left ( \frac{dy}{dx} \right )=2\rightarrow \frac{dy}{dx} =\frac{2-x}{y}=m_{2}

\textup{solving for intersection we get}\, \, 4x=8\Rightarrow x=2

\textup{when} \, \, x=2 , y=\pm 2

\textup{when} \, \, x=2 , y= 2 \rightarrow m _{1} =-1,\, \, m_{2}=0

tan\theta =\left | \frac{m_{1}-m_{2}}{1+m_{1}.m_{2}} \right |

tan\theta =\left | \frac{m_{1}-m_{2}}{1+m_{1}.m_{2}} \right |=\left | \frac{-1-0}{1+0} \right |= 1 \Rightarrow \theta =\frac{\pi }{4}

\textup{when} \, \, x=2 , y= -2 \rightarrow m _{1} =1,\, \, m_{2}=0

tan\theta =\left | \frac{m_{1}-m_{2}}{1+m_{1}.m_{2}} \right |=\left | \frac{1-0}{1+0} \right |=1\Rightarrow \theta =\frac{\pi }{4}

\textup{ Acute Angle between the curves = }\, \frac{\pi }{4}=45^{\circ}

1708
man111 singh ·

Yes Narayan You are Right.

1
pavancm8 cm ·

for 2nd one is it 3/√2

262
Aditya Bhutra ·

2) it is easily understood that min. distance will be when x=y (from graph)
therefore min. distance= 3√2-1

1708
man111 singh ·

Aditiya Right answer.

Your Answer

Close [X]