lim(x→∞) (√x4+ax3+3x2+bx+2 - √x4+2x3-cx2+3x-d)(√x4+ax3+3x2+bx+2 + √x4+2x3-cx2+3x-d)/√x4+ax3+3x2+bx+2 + √x4+2x3-cx2+3x-d)
= lim(x→∞) [(a-2)x3 + (3+c)x2 + (b-3)x + 2+d]/√x4+ax3+3x2+bx+2 + √x4+2x3-cx2+3x-d)
now as lim exists and equal to 4 and the highest deg of numerator = 3 while of denominator is 2 ... So, a-2 = 0 ==> a=2
(3+c)/2 = 4 ==> c = 5
now u have to calculate valus of b and d such that √x4+ax3+3x2+bx+2 and √x4+2x3-cx2+3x-d are defined