or equivalently
tan-1[(√3+1)/(√3-1)]
=tan-1[(1+1/√3)/(1-1/√3)]
=tan-1[tan(Ï€/4+Ï€/6)]
=Ï€/4+Ï€/6
=5Ï€/12
(31/2+i)/(1-i)
(√3+i)(1+i)/2
(√3-1)/2+i(√3+1)/2
now the arguement is?
or equivalently
tan-1[(√3+1)/(√3-1)]
=tan-1[(1+1/√3)/(1-1/√3)]
=tan-1[tan(Ï€/4+Ï€/6)]
=Ï€/4+Ï€/6
=5Ï€/12