Fundamental

Let \, \, y= f(x)\, \, \textrm{be continous ,positive,and increasing over the interval [a,b] }

Show \,\, that\, \,\rightarrow \boxed{\, \, \int_{a}^{b}f(x)dx+\int_{f(a)}^{f(b)}f^{-1}(y)dy=bf(b)-af(a)}

2 Answers

21
Shubhodip ·

Let t=f(z) Then xyf1(t)dt=f1(x)f1(y)zf,(z)dz =(zf(z))f1(x)f1(y)f1(x)f1(y)f(z)dz (integrating by parts)

So, we get xyf1(t)dt=yf1(y)xf1(x)f1(x)f1(y)f(t)dt

Substituting x=f(a),y=f(b) we get \boxed{\, \, \int_{a}^{b}f(x)dx+\int_{f(a)}^{f(b)}f^{-1}(y)dy=bf(b)-af(a)}

21
Shubhodip ·

just found from nishant sir's bookmark..

http://www.targetiit.com/iit-jee-forum/posts/e-x-2-1849.html

Your Answer

Close [X]