g' ( x ) = 2 f ( 2f( x ) + 2 ) f ' ( 2f( x ) + 2 ) 2f ' (x)
g'(0) = 2 f ( 0 )f ' (0 ) 2f' (0)
= 2 . -1 . 1 . 2 . 1 = - 4
66. Let f : (–1, 1) → R be a differentiable function with
f(0) = –1 and f′(0) = 1. Let g(x) = [f(2f(x) + 2)]2. Then
g′(0) =
(1) 4 (2) –4
(3) 0 (4) –2
g' ( x ) = 2 f ( 2f( x ) + 2 ) f ' ( 2f( x ) + 2 ) 2f ' (x)
g'(0) = 2 f ( 0 )f ' (0 ) 2f' (0)
= 2 . -1 . 1 . 2 . 1 = - 4