gravitation..can't solve the series.. :(

find gravitational field at O...

15 Answers

106
Asish Mahapatra ·

ans is:
Gm/1 + Gm/4 + Gm/9 + ......
= Gm(1+1/4+1/9+1/16+........)

1
Terminator ·

asish r u telling it will be Gm(∞).....lolzzzz.......[1][1][1][1][1][1].......

1
Shreyan ·

that's wat i'm asking...hw 2 solve the series (1+1/4+1/9+1/16+........)??
and it won't b ∞...as its a decreasing series..

1
Terminator ·

no it will tend to infinity shreyan.......(1+1/4+1/25.....)---->∞....i think so!!!!...[1][1][1][1][1]........

106
Asish Mahapatra ·

no terminator the terms get smaller so it wont tend to infinity

24
eureka123 ·

converging series hai yaar ..........to sum infinity kaise hoga???

1
°ღ•๓яυΠ·

d asnwer is
lim(x→1)∫(-1)log(1-x)/x

along wid othr terms like Gm n all

1
Terminator ·

ok..so....then i think it will tend to 1 becaz 1>>1/4>>1/25>>........so i think rest of the terms r neglegible correct me if im wrong.......[1][1][1][1][1]....

1
Terminator ·

so i think the answer is Gm........i think so.......[1][1][1][1][1].......

1
Shreyan ·

@integrations, ...gr8!
hw did u get this ans?? [lim(x→1)∫(-1)log(1-x)/x]
can u please post the solution???

1
°ღ•๓яυΠ·

:P
-log(1-x)=x+x^2/2+x^3/3........ ∞

dividin thruout by x
we get
-log(1-x)/x =1+x/2+x^2/3.....∞

nw integratin it we get
d required resuts :)

1
Terminator ·

[4][4][4][4][4].......

1
Shreyan ·

thanx!

62
Lokesh Verma ·

awesome work integration :)

66
kaymant ·

The series
1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\ldots \textrm{ to }\infty=\dfrac{\pi^2}{6}

Your Answer

Close [X]