maths

in triangle abc,Δ2=a2b2c2/2(a2+b2+c2)then which type triangle is abc right angel, equilateral,isoscelesor scalene

3 Answers

62
Lokesh Verma ·

a2+b2+c2=8R2

It is right angled.. but how i will have to think a bit more :)

basically bcos c=2R for a right angled traingle

and a2+b2=c2

But this is not a proof but a justification....

I will try to get a proof..

1
skygirl ·

a^2+b^2+c^2=8R^2 -----------(1)

from sine law,,, a=2RsinA, b=2RsinB, c= 2RsinC...

puting this in eqn 1,,,

sin^2A+ sin^2B+ sin^2C = 2
=>1- 2sin^2A+1- 2sin^2B+ 1- 2sin^2C = 3 - 2X2 =-1
=>cos2A+ cos2B + cos2C +1 =0
=>2cos(A+B)cos(A-B) + cos[2(Ï€-(A+B))] +1 =0
=>2cos(A+B)cos(A-B) + cos2(A+B) +1 =0
=>2cos(A+B)cos(A-B) + 2cos^2(A+B) -1 +1 =0
=> cos(A+B) [cos(A-B) + cos(A+B)] =0
=>cos(A+B)[2cosAcosB] =0

=> either cos(A+B)=0 OR cosA=0 or cosB=0
=> A+B =90° OR A=90° OR B=90°....

HENCE IT'S A RIGHT TRIANGLE !!! :)

1
skygirl ·

thr can be some shorter proof... but i jus went on doing without thinking and landed up with this result.... :)

Your Answer

Close [X]